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1. (a) Prove that every tree on at least two vertices has at least two end
vertices (vertices of degree 1).

(b) Prove that any n— vertex tree has exactly n — 1 edges.

(c) Prove or disprove : if a graph has n vertices and n — 1 edges then
it is a tree.

(d) Prove or disprove : if a tree has exactly two end vertices, then it is

a path. [5 x 4 = 20]
2. (a) State and prove Moore’s inequality.

(b) Show that any Moore graph is regular. 8 + 12 = 20]
3. (a) Show that, up to isomorphism, there is a unique 16— vertex graph G

such that GG induces a copy of the Petersen graph on the non-neighbors
of any vertex, and G is K3— free.

(b) Compute the spectrum of G.
(c) Compute the order of the full automorphism group of G.
[15-+5+5 =25]
4. Let X1, Xy, -+, X, be b k— subsets of a v— set such that § (X;NX;) = A
for i # j. Here v > k > A\
(a) Show that b < v.

(b) Give an example of such a family of sets with b =v =7k =3,\ =
1.

[10 + 10 = 20]

5. If H is a connected graph with chromatic number 2, then show that
H has a unique proper colouring in two colors. What is the number of
proper 2— colorings of H if H has ¢ connected components ?  [10+5
=15]



